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Stationary and cyclostationary statistical models are developed to predict Arctic and Antarctic sea ice 
anomalies, usirlg as predictors previous sea ice, atmospheric, and oceanic anomalies. A prediction model 
hierarchy is developed by using first internal (i.e., sea ice) predictors, includ•ing persistence, lateral advec- 
tion, and diffusion, and a cyclostatlonary model that allows the prediction coefficients to vary seasonally. 
An external cyclostationary model hierarchy is developed next to in;v•stigate the ability of atmospheric 
winds, heat flax proxies, air temperatures, and sea surface temperatures (SST'•I to predict sea ice extent. 
In the Arctic the highest skill was generally achieved by the cyclostationary internal model. Attempts to 
forecast the ice data at 1-2 month intervals after removal of its autoregreSsive component, using external 
predictors, gave nonsignificant models. At longer lead times (e.g., 3 months) the SST in the North Pacific 
was superior to persistence for sea ice 'Prediction in the western Bering Sea. In the Southern Ocean, 
especially off East Antarctica, the model that included lateral advection and diffusion outperformed both 
persistence and the cyclostationary internal model. In the Weddel Sea and the Ross Sea, persistence 
proved to be the best sea ice predictor. No external models were tested for Antarctic sea ice because of 
insufficient data. 

1. INTRODUCTION 

This study is an attempt to ascertain how well one can 
predict sea ice anomalies at time scales of months to seasons. 
The main emphasis here will be on Arctic sea ice, since longer 
time series are available from this region. Improved prediction 
models of ice have become more important and necessary in 
recent years as a result of the increased volume of shipping in 
the Arctic and the recent discoveries of offshore oil in the 

Bering and Beaufort seas. Also physical and numerial models 
of sea ice point to the important role of this quantity in both 
the radiation and heat budgets in polar regions--and hence in 
global climate [Untersteiner, 1975]. 

In order to better understand the causes and effects of 

Arctic sea ice variability, a number of different types of models 
(dynamic, thermodynamic, stochastic, statistical, to name a 
few) has been developed to complement the increasing set of 
observational results. For instance, both dynamic and thermo- 
dynamic models have simulated, with reasonable success, the 
gross features of the Arctic pack ice [cf. Parkinson and Wash- 
ington, 1979; Thorndike et al., 1975; Hibler, 1980, Stigebrandt, 
1981]. The stochastic methods of Hasselrnann [1976] have 
been used by Lernke et al. [1980] to describe the statistical 
space-time structure of sea ice anomalies in terms of white 
noise atmospheric forcing, local stabilizing relaxation, and lat- 
eral diffusion and advection. On the observational side, such 
gross features as the average seasonal cycle of total Arctic sea 
ice area have been calculated by a number of authors in recent 
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years [e.g., Sanderson, 1975; Walsh and Johnson, 1979a, here- 
after WJ1; Lemke et al., 1980]. 

Research on local ice forecasting has been an active area for 
scientific study. Ih a qualitative analysis of the Greenland- 
Northern European seesaw [van Loon and Rogers, 1978; 
Rogers and van Loon, 1979], unusually cold winters in Green- 
land and warm winters in Europe were often found to be 
followed by more than normal sea ice in the Davis Strait and 
less than normal ice in the Baltic Sea. These results are similar 

to those of Vinje [1975]. Overland and Pease [1982] found the 
externally forced variation of cyclone position to be the pri- 
mary factor in determining interannual variability of sea ice 
extent in the Bering Sea, while Rogers [1978] found the cumu- 
lative number of thawing degree days occurring in spring to 
be one of the best predictors of the summertime ice extent off 
Barr6w. A quantitative study of predictability by Walsh 
[1980] found persistence to be the best predictor of Alaskan 
sea ice extent on the order of months. Similar studies by 
Walsh and Johnson [1979b; hereafter WJ2] and by Walsh and 
Sater [1981; WS] found that persistence, sea surface temper- 
ature (SST) and surface air temperatures were sometimes ef- 
fective predictors of sea ice extent. 

What is missing in earlier ice prediction studies, however, is 
some sort of comprehensive treatment of all Arctic regions 
and a systematic comparison of atmospheric, oceanic, and sea 
ice predictors. Such a uniform approach to the sea ice forecast 
problem is one of the goals of this paper. In addition, the use 
of cyclostationary terms (e.g., seasonally varying prediction 
coefficients) in the modeling process [cf. Hasselmann and Bar- 
nett, 1981] offers a new, but logical, extension of WJ2, WS, 
and the stochastic model of Lemke et al. [1980]. The question 
to answer here is whether seasonally dependent prediction 
coefficients improve on the predictability, and if so, for which 
sectors and forecast intervals. 
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In overview the paper consists of a data description (section 
2) followed by the linear forecasting techniques and model 
evaluations procedures (section 3). Section 4 discusses a hier- 
archy of forecast models with internal predictors, i.e., predic- 
tion of future sea ice extent, using previous sea ice data only. 
Section 5 describes the results of attempting to predict future 
ice variations with cyclostationary models using external pre- 
dictors, i.e., previous atmospheric and oceanic data. Section 6 
discusses teleconnections of sea ice and the Southern Oscil- 

lation Index. The conclusions and limitations of this study are 
summarized in section 7. 

2. DATA 

The Arctic sea ice data set is based on 25 years (1953-1977) 
of monthly averaged ice-covered areas in 36,10 ø longitudinal 
sectors, as described by WJ1. The data were obtained from 
ship and aircraft measurements in the initial period; the last 
11 years of data were satellite derived. In this study the Arctic 
sea ice data was actually used on a 30 ø longitudinal grid as 
indicated in Figure 1. 

Due to this relatively large-scale as well as year-round ap- 
proach to Arctic sea ice anomalies, certain deficiencies in the 
data (such as monthly averages substituted for missing data at 
individual grid points, particularly in the winter months and 
at the beginning of the study period--see WJ1) were not so 
crucial to the results presented here. However, this would not 
be the case for a more detailed, small-scale, and/or wintertime 
study of sea ice with this data, such as that done by Overland 
and Pease [1982]. 

Monthly near-surface atmospheric temperature and pres- 
sure fields for the same time period (1953-1977) were calcu- 
lated from gridded northern hemispheric products of the Na- 
tional Meteorological Center. Monthly time series of sea sur- 
face temperature were created from the Surface Marine Deck 
(TDFll). The regions over which the atmospheric and oceanic 
fields were averaged to obtain specific predictor time series are 
shown in section 5. 

The 8-year (1973-1981) Antarctic data of the sea ice edge 
(concentration larger than 5/8) on a 10 ø longitudinal grid is 
based on the weekly southern hemisphere sea ice charts pub- 
lished by the U.S. Fleet Weather Facility, Suitland, Maryland 
(for further detail, see Lemke et al. [1980]). In this study, only 
monthly averages of Southern Ocean sea ice data were used at 
four selected longitudes (Figure 1). 

3. LINEAR PREDICTION METHODS 

The linear prediction models were constructed following the 
methods described in Barnett and Hasselmann [1979, BH] for 
systems with stationary statistics and as extended in Hassel- 
mann and Barnett [1981, HB] to the cyclostationary case. The 
associated problems of determining model order and signifi- 
cance are discussed by Barnett et al. [1981]. The techniques 
used here are described briefly, since the above references de- 
velop the subject in detail. 

The prediction models we shall be concerned with are the 
class of general cyclostationary, multilagged, multipredictor 
linear regression models of the form (cf. BH, HB) 

mt m 

y(t + q)= • • Dmx,(t- l) + rl(t) (1) 
i=0 /=0 

where y denotes the predictand, xi the predictor set, q and l 
are (discrete) lead and lag times, respectively, and r/ is the 
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Fig. 1. Spatial distribution of sea ice predictor and predictand re- 
gions (sectors) for internal model hierarchy. 

residual, which is to be minimized. Both y and xi are detrend- 
ed, and the mean annual cycle is subtracted prior to use in the 
modeling process. The cyclostationarity is expressed by the 
dependence of the regression coefficient Di,t on time t and is 
assumed to be periodic: 

Dm= Di(, + p)l = Dil•t (2) 

where p is the period (in our case, 12 for monthly data) and 
k = t(mod p). Thus, k represents a monthly index running 
from 0 to p - 1. 

The cyclostationary case can be reduced to the standard 
stationary case either by constructing separate models for 
each phase k of the annual cycle (fixed phase models) or by 
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expanding the coefficients in a Fourier series 

[ 
2nk 2nk 

Dit a = Eit ø + Eit c cos •-{- Eits sin 
ß p P 

[ 4zrk 4zrk 1 + Eit 2c cos • + Eit 2s sin + ... (3) 
P P 

and then optimizing the model simultaneously over the entire 
annual cycle (phase-averaged model). 

If the Fourier expansion (3) is truncated below the Nyquist 
frequency, in this case 6 cpy, the phase-averaged model con- 
tains fewer coefficients and therefore generally achieves a 
higher statistical significance than a fixed phase model, i.e., a 
model that, in this case, has an explicit prediction coefficient 
for each month. On the other hand, if a statistically significant 
fixed-phase model can be constructed, it has the advantage of 
providing a full resolution of the annual cycle (cfi HB). 

Truncating (3) at the first harmonic and substituting it into 
(1), the phase-averaged model may be written in the notation 
of a stationary, nonlagged regression model 

y'(t + q)= • a•'z•'(t) + rl (4) 
•=1 

where the a' are the prediction coefficients associated with a 
transformed, orthonormal predictor set (EOF's, z'), '7' repre- 
sents a compression of the subscript triple shown in (3). With 
y, = y/•y2)x/2, the prediction coefficients are given by 

a(= (y'z(> (5) 
Methods of determining the appropriate model order (n in 

(4)) and the statistical significance of the a•' are given in BH 
and Barnett et al. [1981]. The important quantities here are 
the hindcast skill, the artificial skill, and the /9 2 statistic. The 
hindcast skill, being the fraction of the variance of y' that is 
explained by the model, is defined generally by 

S. = 1 - ((Z•a•'z•')2) -- (y,2) (6) 
(y, 2) 

but reduces in the transformed coordinate system to 

s. = (a() (7) 
This paper considers only hindcasts, since all available data 
are used to determine the prediction coefficients (5). 

In practice the hypothetical averages (...) must be esti- 
mated from finite data samples. The sampling errors in the 
cross correlations introduce errors in the prediction coef- 
ficients a i' 

(3ai' = a•'- ai ø (8) 

and an apparent, or "artificial," skill given by 

S^ = • ((cSa,') 2) (9) 

where ai ø is the "true" value derived from a hypothetical infi- 
nite data ensemble, i.e., the artificial skill is the expected hind- 
cast skill, assuming there is no real correlation between predic- 
tors and predictand ai ø - 0. 

The significance of a prediction model can then be ex- 
pressed in terms of the statistic 

p2 = • Mi j- : 5ai, ga.j, (10) 
ij 

where M•j= (ga•'gaj'). The calculation of the covariance 

matrix of the sampling errors M•j is shown in the appendix of 
BH. The procedure used here is straightforward, as in BH, 
except for a slight modification of the significance test to in- 
clude the effects of self-correlation, i.e., by retaining an ad- 
ditional series in the expression for the error covariance 
matrix (BH, equation (A3)). The aim of statistical prediction is 
to have S. >> S^ and at the same time keep p2 large enough to 
exceed the 95% confidence level of a zero prediction model 
(see BH). The latter criterion provides an objective method of 
determining the highest acceptable model order (n) in the hier- 
archy defined by (4). 

Interpreting model results is an important aspect of the 
modeling process and is described in some detail in BH and in 
Jenkins and Watts [1968]. The basic idea in this study will be 
to discuss the important predictor-predictand relations 
through the transfer functions, i.e., the prediction coefficients 
E•t ø,Eit ½ and E•? (equation (3)). These transfer functions are 
equivalent to the Green's functions of the differential equa- 
tions that link the predictor and predictand and thereby pro- 
vide information on the phase and time scales of the linkage. 

4. INTERNAL PREDICTORS 

The predictands and predictors considered for the Arctic 
are the ice-covered areas in 12, 30 ø longitudinal sectors 
(Figure 1). Since sea ice data is being used to predict future sea 
ice variations, we refer to the predictors as "internal." The 30 ø 
sectors were chosen so as to divide them into those bordering 
continents and those having access to a larger water body. 
These sectors also correspond to those used in Johnson 
[1980]. As predictands and predictors for the Antarctic we 
chose four typical 10 ø longitudinal sectors centered around 
20øE, 130øE, 170øW, and 20øW (Figure 1). The predictor set 
also included the adjacent neighbor sectors immediately on 
each side of the predictand sector. 

4.1. Model Hierarchy 

A series of models was used to predict the behavior of each 
sector time series (the predictand). This model hierarchy is 
described briefly as follows: 

Model 1. Simple persistence: Predictor 1 equals sea ice 
cover in the same sector as predictand. 

Model 2. Nei•thbors: Predictor 1 equals sea ice cover in 
the same sector as predictand. Predictor 2 equals sea ice cover 
in eastern adjacent sector. Predictor 3 equals sea ice cover in 
western adjacent sector. 

Model 3. Cyclostationary: Predictor 1 equals sea ice 
cover in the same sector as predictand. Predictor 2 equals 
predictor 1 multiplied with sin (2•k/p). Predictor 3 equals pre- 
dictor 1 multiplied with cos (2r•k/p). 

Model 1 describes persistence, while model 2 allows for 
interaction with the eastern and western neighboring sectors. 
The transfer functions for the adjacent sectors can be interpre- 
ted as lateral advection and diffusion of sea ice anomalies [cf. 
Lemke et al., 1980]. The cyclostationary model 3 may be 
thought of as periodic persistence. It allows the prediction 
coefficients to vary seasonally. All models are applied with one 
lag of prior information (i.e., 1 = 0 in equation (1)) for a vari- 
ety of prediction lead times (q). 

4.2. Model Results: Arctic 

We will examine first hindcast skill versus sector at a fixed 

prediction lead time for the three models just discussed. The 
results for a lead time of 1 month are shown in Figure 2. The 
neighbor model does not appear to show much improvement 
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HINDCAST SKILL: ARCTIC 
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Fig. 2. Hindcast skill (%) versus sector for the internal Arctic model 
hierarchy. Lead time is I month. All values are significant. 

over the persistence case. This is consistent with the results of 
Lernke et al. [1980], who found that, while advection processes 
were important for the Antarctic where continental infringe- 
ment does not obstruct east-west ice transports, a more simple 
model without advection sufficed for the Arctic. The cyclo- 
stationary model shows improvement over the persistence ap- 
proach for a number of sectors, the most marked being the 
Beaufort Sea (145øW) and the sector to the east (115øW). The 
differences in hindcast skill over the persistence model are also 
significant for both of these sectors [see Johnson, 1983, Table 
4-]. This tendency continues as one looks at the results for the 
predictands to the west. The difference between cydo- 
stationary and persistence models becomes quite small in the 
Bering Sea (175øW), where wintertime variability is large. 
However, the model differences again become substantial in 
the Siberian Arctic (155øE to 95øE), where variability is again 
more or less restricted to summer. So the cyclostationary ap- 
proach at short lead times appears to be most fruitful for 
predicting ice in those sectors blocked from further ice growth 
in winter by continents. Clearly, a prediction coefficient con- 
stant throughout the year does not well describe these latter 
situations. At this point one might look ahead and infer that a 
cyc!ostationary model may not prove as crucial in the Antarc- 
tic (see section 4.3). 

The hindcast skill values versus longitude (sector) for a 3- 
month prediction lead time are shown in Figure 3. Note that a 
significant model could not be constructed for a number of 
sectors (open circles). Moreover, the more sophisticated 
models did not show a significant improvement over the 
simple persistence model. Although the only significant model 
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Fig. 3. Same as Figure 2, but for lead time of 3 months. The open 
circles indicate nonsignificant values. 

TABLE 1. Hindcast Skill Versus Lead Time for the Model 

Hierarchy Applied to the East Siberian Sea 

Lead Time, S., SA, 
Model months % % 

1 1 26 1 
2 3 1 
3 

2 1 27 2 

2 3 
3 

3 1 38 2 
2 9 2 
3 

at a 3-month lead time for some sectors (again those with 
limited wintertime variability) was the cyclostationary one, the 
improvement over persistence was not as dramatic as for the 
1-month lead time. 

Two sectors were chosen to test skill versus prediction lead 
time: East Siberian Sea (155øE) and the Barents Sea (35øE). 
The Siberian sector has a small lagged autocorrelation, while 
the Barents Sea has a higher one. The hindcast skill and signif- 
icance for lead times of 1-6 months was computed for both 
sectors. 

None of the models were found to be significant beyond a 
lead time of 2 months in the Siberian sector (Table 1). This is 
possibly due to the poor quality of the data from this region 
(see WJ1). The cyclostationary model does not show much 
improvement for prediction lead times of 3 months or more, 
and that is not surprising' The basic predictability of the 
system (based on internal factors) has also already dropped 
well below significance at 3 months. At lead times of 1 or 2 
months though, the increase in hindcast skill of the cyclosta- 
tionary model over persistence (see Table 1) does seem real. 

The results of hindcast skill versus lead time for the Barents 

sector are shown in Table 2. The simple persistence model 
shows apparent skill out to a 5-month lead time. Expectedly, 
the neighbors and cyclostationary models ar.e significant up to 
a prediction lead of 6 months. However, these models show 
little increase in hindcast skill over persistence for lead times 
up to 5 months. It is only at the 6-month lead time that the 

TABLE 2. Hindcast Skill Versus Lead Time for the Model 
Hierarchy Applied to the Barents Sea 

Lead Time, S., SA, 
Mode ! months % % 

1 1 49 2 
2 32 2 
3 17 2 
4 10 2 
5 7 2 
6 -- 

2 1 50 3 
2 32 3 
3 17 3 
4 11 3 
5 12 3 
6 9 3 

3 1 50 3 
2 33 3 
3 19 3 
4 12 3 
5 11 3 
6 13 3 
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higher-order models become appreciably different from simple 
persistence. 

Comparing these results with those from the Siberian 
sector, one can make the following remarks concerning the 
improvement of the cyclostationary model over simple persist- 
ence: For sectors with a small autocorrelation time, e.g., East 
Siberian Sea, the cyclostationary model appears to show im- 
provements primarily at smaller prediction lead times. For 
sectors with greater persistence (e.g., Barents Sea, Denmark 
Strait) the cyclostationary model may only show improvement 
at larger lead times or act to increase the maximum forecast 
interval. 

The above studies were generalized to examine the limit (in 
time) of predictability versus sector. The maximum forecast 
interval for each sector is shown in Figure 4. The correspond- 
ing skill values and number of significant predictors are given 
in Table 6 of Johnson [1983]. The Barents Sea (35øE) sector 
shows the highest significant maximum forecast interval 
within the model hierarchy considered here. This is not sur- 
prising, since the Barents sector also has one of the highest 
autocorrelations at a 1-month lag. 

It is interesting to note that neither the "neighbors" nor the 
cyclostationary models increased the maximum forecast inter- 
val for those sectors in the Siberian and Alaskan Arctic (95øE 
to 1A<o,m -r• ß .-•., vvj. s,• maxlrnum forecast :-' ..... ' .t_ ,lt,ivai in tn• Eurasian 

Arctic (35øE to 65øE) can be increased on the order of 1 
month by either cyclostationary or neighbor models. The larg- 
est increase in maximum prediction interval from a more com- 
plex model, however, is shown for the cyclostationary ap- 
proach in the Canadian Arctic, including Baffin Bay (115øW 
to 55øW). Of these latter sectors, two tend to have little win- 
tertime variability (Victoria Island and Hudson Bay), although 
this is not the case for Baffin Bay. 

The dependence of the hindcast skill on seasonal phase was 
investigated next for several selected regions. It was found that 
the skill was generally positive in the winter and summer 
months but negative during the advance and retreat phase in 
fall and spring, respectively. The reason for the negative skill 
was investigated by constructing a fixed-phase model for each 
month, i.e., fully resolving the annual cycle. This latter model 
showed substantial hindcast skill in winter and summer, with 
low values in spring and fall. This may be because the winter/- 
summer steady state ice conditions simply last for a relatively 
long time, while the transition between seasonal states is fairly 

MAXIMUM FORCAST INTERVAL: ARCTIC 

6 /• 

//\\ _. 
5 MODEL •/ -& / \ 5 ' 

'-4 

o i'X.\ l' / • 
,,, / \ 

ß 
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I 

5E 65E 125E 175W 115W 55W 5E 

SECTOR 

Fig. 4. Maximum significant forecasts interval versus sector for the 
internal Arctic model hierarchy. 
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Fig. 5. Hindcast skill (%) versus sector for the internal Antarctic 
model hierarchy. Lead time is 1 month. Open circles indicate 90% 
instead of 95% significance. 

rapid. This distribution of prediction coefficients suggests that 
for practical prediction purposes it will be necessary to retain 
higher-order harmonics in the Fourier expansion (equation 
(3)). 

4.3. Model Results'Antarctic 

Due to the short time series of Antarctic sea ice (8 years), 
estimation errors in the prediction coefficients become rela- 
tively large, increasing the artificial skill S^ and decreasing the 
significance p2. Therefore it is generally more difficult to create 
acceptable models for the Southern Ocean sea ice. The results 
of the application of the model hierarchy to 10 ø sectors cen- 
tered at various longitudes around Antarctica demonstrate 
this fact (Figure 5 and Table 3). 

Although the hindcast skill was relatively large, the higher- 
order models generally failed to be significant at 95% for 
prediction leads of 2 months and more (Table 3). Only the 
persistence model was able to predict sea ice anomalies for up 
to 2-month lead times. This short maximum forecast interval 

is partly due to the shortness of the sea ice time series. How- 
ever, it is also in accordance with the short correlation time 
scale of Antarctic sea ice, which is of the order of 1 to 2 
months compared to 1 to 4 months for Arctic sea ice. The 
maximum forecast interval for the persistence model at 20øE 
and 130øE (1 month) and at 170øW and 20øW (2 months) is in 

TABLE 3. Hindcast Skill for the Model Hierarchy Applied to 
Various Antarctic Sectors 

Lead Time, 
Sector Model months S., % Ss, % 

20øE 1 1 39 2 
2 1 47 7 

2 (16) (4) 
3 1 (36) (5) 

130øE 1 1 31 2 
2 1 42 7 
3 1 29 5 

170øW 1 1 31 2 
2 11 2 

2 1 30 5 

3 1 (26) (5) 
20øW 1 1 45 4 

2 22 4 

2 1 (47) (10) 
3 1 • 

The parentheses indicate models that were only significant at the 
90% level. 
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5670 JOHNSON ET AL..' SEA ICE ANOMALIES 

Fig. 6. Spatial distribution of sea ice predictand regions (I1 through I4) and SST predictor regions (SST1 through SST3) 
for external model hierarchy. 

accord with the autocorrelation time scale of sea ice anomalies 

at those longitudes [cf. Lernke et al., 1980]. 
At 20øE and 130øE the Antarctic Circumpolar Current and 

the prevailing westerlies affect the evolution of sea ice anoma- 
lies throughout most of the year. Model 2 (neighbors) gener- 
ally yielded a larger skill than persistence (model 1) and the 
cyclostationary model 3, which at 20øE was only significant at 
the 90% level (Figure 5). In the Ross Sea (170øW), persistence 
and neighbor models performed equally well for 1-month 
leads, while model 3 was only significant at the 90% level. For 
a 2-month prediction lead time, both higher-order models 

failed the significance test. In the Weddell Sea (20øW), persist- 
ence seems to be the only acceptable model. Although its skill 
was high (47%), the neighbor model was only valid at 90%. 

Generally, the seasonal modulation of the prediction coef- 
ficients did not prove to be important for Antarctic sea ice 
anomalies in contrast to the Arctic. Advection and diffusion, 
on the other hand, seem to be significant for the Southern 
Ocean sea ice. The transfer coefficients of model 2 agree with 
the observed and empirically determined [cf. Lemke et al., 
1980] advection pattern of Antarctic sea ice. 

The seasonal dependence of hindcast skill for the Antarctic 

Fig. 7. Spatial distribution of atmospheric predictor regions (p, sea level pressure; T, 1000-700 mbar thickness) for 
external model hierarchy. 
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JOHNSON ET AL.' SEA ICE ANOMALIES 5671 

appeared similar to the situation in the Arctic. Both cyclosta- 
tionary and full-resolution fixed-phase models suggest higher- 
order annual harmonics in the hindcast skill. The short Ant- 

arctic data series made a quantitative description of this signal 
highly uncertain. 

5. EXTERNAL PREDICTORS 

Recent investigations of large-scale interactions in the sea 
ice-ocean-atmosphere system have shown that the Arctic sea 
ice extent is contemporaneously correlated with the high- 
latitude atmospheric circulation patterns and SST distri- 
butions [e.g., Walsh and Sater, 1981; Walsh and Johnson, 
1979b; Crane, 1978; Overland and Pease, 1981; Niebauer, 
1980; Schell, 1970]. The usefulness of these cross correlations 
for large-scale, long-term, and seasonally dependent prediction 
of sea ice extent has not generally been established in previous 
studies (for an exception, see Walsh [1980]). The emphasis in 
this section, then, is to investigate the predictive skill of a 
hierarchy of seasonally dependent prediction models that uti- 
lize as predictors atmospheric and oceanic variables, which 
will be called henceforth "external" predictors. 

These models are applied to several selected sectors of 
Arctic sea ice as shown in Figure 6. One set of external predic- 
tors is the sea level pressure fields {P) surrounding each ice 
sector such that east-west and north-south pressure gradients 
will represent the v and u components of the atmospheric 
geostrophic flow over the sector, respectively (Figure 7). The 
air temperature predictors (T) are taken here as proportional 
to the 1000--700 mbar thickness (Figure 7). These predictors 
and their spatial gradients were used to represent mean atmo- 
spheric temperatures and atmospheric heat fluxes over the 
sectors. In our analysis the sea surface temperature infor- 
mation is also investigated. The regions over which these pre- 
dictors (SST1, SST2, SST3) were averaged are also shown in 
Figure 6. All predictors and predictands were Jetrended, and 
the annual cycle was subtracted. 

5.1. Model Hierarchy 

The model hierarchy for atmospheric and oceanic data used 
to forecast the sea ice in a specific sector is characterized as 
follows: 

Model 1: Predictors 1-4 equal the four sea level pressure 
(SLP) predictors that surround the sector. 

Model 1: Predictor 1 equals the sum of all atmospheric 
pressure fields that surround the sector. Predictor 2 equals 
east-west pressure difference (v component of geostrophic flow 
in atmosphere). Predictor 3 equals north-south pressure differ- 
ence (u component of geostrophic flow in atmosphere). 

Model 3: Predictor 1 equals east-west pressure difference 
(meridional wind component) multiplied with north-south 
temperature difference (equal to meridional atmospheric heat 
flux). Predictor 2 equals north-south pressure difference (zonal 
wind component) multiplied with east-west temperature differ- 
ence (equal to zonal atmospheric heat flux). 

Model 4: Predictor 1 and 2 as in model 3. Predictor 3 

equals air temperature above the ice sector. 
Model 5: Predictors 1-3 as in model 4. Predictor 4 equals 

sea surface temperature in designated area. 
Unless stated otherwise, all predictors are applied with two 

lags (i.e., l = 0 and 1 in equation (1)) for a variety of lead times 
(q). Note that the maximum n in (4) is 6 times the number of 
atmospheric and oceanic predictors stated above for each 
model. A factor of 2 arises from the two time lags applied, and 
a factor of 3 is due to the first three Fourier coefficients used 

in the expansion of the prediction coefficients (3), i.e., for 
model 5, nma x = 24. The complete set of predictors for each 
model is orthogonalized, and only the results for the first six 
or ten EOF's are displayed in the following figures. 

5.2. Model Results 

This section summarizes the results of applying the above 
model hierarchy to a selected group of regional Arctic sea ice 
data. 

Davis Strait. The results of the model hierarchy applied to 
the Davis Strait sector (I2) for a 1-month prediction lead time 
are shown in Figure 8. Generally, skill and significance in- 
crease with increasing model number. The best model is model 
5, although it is only marginally better than model 4. This is 
due to the poor correlation between the Davis Strait sea ice 
and SST2, which lies downstream of the major ocean current, 
the Labrador Current. Walsh and Sater [1981] also found 
rather small correlations between sea ice and SST in the 

North Atlantic, whereas large correlations were found for 
North Pacific SST and Bering Sea ice. The best predictor in 
model 5 is the east-west atmospheric heat flux, followed by the 
air temperature above the ice sector, the north-south atmo- 
spheric heat flux, and finally the SST2. 
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Fig. 8. Significance p2 and skill St• (%) for the external Arctic 
model hierarchy applied to the Davis Strait sector (I2). Lead time is 1 
month. The lags are 0 and 1 month. 
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5672 JOHNSON ET AL.: SEA ICE ANOMALIES 

The decomposition of the skill into monthly values (season- 
al skill) shows that the prediction of sea ice anomalies with 
external predictors is far better in winter than in summer, 
when the skill levels are practically zero. This feature is 
characteristic of all models (Figure 9). The seasonal skill of the 
internal models introduced in section 4, on the other hand, 
exhibits large positive values for both winter and summer and 
large negative values during the advance and retreat phase in 
fall and spring, respectively. 

Adding 1 year of past prediction information into model 5, 
as opposed to only the last 2 months, did not significantly 
change p2, $n, and its seasonal dependence. The transfer func- 
tions (i.e., prediction coefficients) drop off to small values for 
lags larger than 3 months (Figure 10), thereby explaining this 
result. Increasing the prediction lead time shows that model 5 
can predict sea ice anomalies in the Davis Strait for up to 3 
months ahead (Figure 11). Predicting sea ice with its own past 
values (persistence) generally yields larger values for p2 and SH 
(see Figures 2 and 3). If persistence is removed from the sea ice 
time series, none of the above models is valid to describe the 
residuals. 

Bering Sea. The results of the model hierarchy for a 1- 
month prediction interval applied to the western Bering Sea 
(I4) are shown in Table 4. As in the Davis Strait, model 5 
provides the best prediction in the western Bering Sea, es- 
pecially if 1 year of past information is used in the predictor 
set. The main new result here is that the Pacific SST3 is more 

important as a predictor for western Bering Sea ice. This is 
demonstrated in Figure 12. Whereas the transfer functions for 
the atmospheric predictors drop off to smaller values for lags 
larger than 2 or 3 months, it remains significant for the Pacific 
SST3 throughout the past year. The increase of the transfer 
function for the air temperature at lags of 9 to 11 months 
suggests that a low-frequency signal is present in both the air 
temperature and the sea ice time series. 

The best predictor in model 5 (with 1 year of past infor- 
mation) is the Pacific SST3, followed by the air temperature 
above the sea ice, the meridional atmospheric heat flux, and 
finally the zonal heat flux. As in the Davis Strait the seasonal 
skill is large in winter and small in summer. Increasing lead 
time shows that model 5 can predict sea ice anomalies signifi- 
cantly for up to 3 months ahead (Figure 13). The hindcast skill 
for the best significant "external" model (SH = 25%) for a 1- 
month prediction interval is slightly smaller than that for the 
best "internal" model (30.5%, see Figure 2). For a 3-month 
prediction interval the best "external" model (15%) is better 
than the best "internal" model (7%, see Figure 3). 

In the eastern Bering Sea (I3), the Pacific SST3 is of no help 
as a predictor. Indeed, the maximum forecast interval is only 1 
month. At that short time scale the best predictors are the air 

SEASONAL SKILL: DAVIS STRAIT 
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• •, ,4 
¾ 3 

0 

-20 , • i i • 
J F M A M J J A S O N D 

MONTH 

Fig. 9. Seasonal skill (%) for models 3, 4, and 5 applied to the Davis 
Strait (I2). Lead time is 1 month. The lags are 0 and 1 monthß 
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Fig. 10. Transfer functions (equal to prediction coefficients) for 
the zeroth Fourier coefficient of the zonal heat flux (solid line) and air 
temperature (dashed line) as a function of lag time from model 5 
applied to the Davis Strait (I2). 

'ZONAL'•• 
HEAT FLUX 

temperature above the ice sector, followed by the north-south 
atmospheric heat flux, the east-west atmospheric heat flux, 
and finally by the Pacific SST3. The skill is only significant 
from February to May and is negligible during the rest of the 
year. 

Greenland Sea. The results of the model hierarchy applied 
to the Greenland Sea sector (I1) for 1-month lead and 2- 
months lag time are given in Table 5. Generally, the skill was 
a factor of 2 smaller than for the other sectors. Models 3 and 4 

were not acceptable, models 1 and 2 only at the 90% confi- 
dence level. The best predictor in model 2 was the meridional 
wind. 

The only model accepted at the 95% level was model 5, but 
the skill of 6% was not impressive. The seasonal distribution 
of the skill showed large values (14% and 27%) for November 
and December and was practically zero throughout the rest of 
the year. The best predictor of model 5 was the air temper- 
ature, followed by the meridional heat flux and SST1. No 
significant model was achieved for 2 or more months predic- 
tion lead times. Increasing the lag time did not improve the 
model performance. 

6. TELECONNECTIONS 

The coupling between the tropical regions of the globe and 
higher latitudes is a subject of much current research. We 
undertook a cursory examination of possible couplings be- 
tween climate variations in the tropics, represented here by the 
Southern Oscillation Index (SOI), and the variability of sea ice 
in sectors 1-4 (see Figure 6) and also for the Barents Sea. The 
results presented below suggest the need for additional effort 
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Fig. 11. Hindcast skill (%) for different lead times for model 5 
applied to the Davis Strait 02). The truncation of the curves denotes 
the significance cutoffß 
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JOHNSON ET AL.' SEA ICE ANOMALIES 5673 

TABLE 4. Hindcast Skill for the Model Hierarchy Applied to the 
Western Bering Sea (I5) for 1-Month Lead and 2-Month Lag Times 

Model S., % Sa, % 

1 3 1 
2 

3 11 2 
4 12 2 
5 14 3 
5, 25 7 

Model 5 was also applied with 12 months lag time (*). 

to study what appears to be potentially real, tropical-high 
latitude couplings. 

6.1. Methods 

The SOI, defined here as the SLP difference between Easter 
Island and Darwin, was available at monthly intervals for the 
period of the ice record (1957-1977). Possible SOUsea ice cou- 
plings were investigated with the time-dependent cross- 
correlation function, i.e., 

r(m, z)= (l(m, v).S(m, v, 

where I and S represent the monthly sea ice and SOI time 
series respectively, m is a month counter (1, 2 .... , 12), v is a 
year counter (1957, 1958 ..... 1977), and z is a time lag (-6, 
-5 ..... 5, 6 months). Significance levels on r were determined 
according to Jenkins and Watts [1968], after taking account 
of the autocorrelated natures of I and S. As a rule of thumb, 
r _• 0.4 is expected to occur by chance less than 10% of the 
time if I and S are uncorrelated. 

6.2. Results 

The relation between two sea ice sectors and the SOI were 
selected for discussion. The other ice se•ctors follow one or the 
other of these two, as noted. 

Greenland Sea (I1). The time-dependent correlation be- 
tween the SOI and Greenland Sea series is shown in Figure 14 
(upper). Much the same picture emerged for the Barents Sea 
sector. It is clear that the nature of the SOI in early summer 
gives a hint as to the subsequent summer and winter's sea ice 
condition in the Greenland Sea. The size of the correlation 
suggests predictive skill levels of 15%-20%; values typically 
as large as those found in sections 4 and 5. The correlations 

TRANSFER FUNCTION'W. BERING SEA 
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/ / • \ HEAT FLUX 
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Fig. 12. Transfer functions (equal to prediction coefficients) for 
the zeroth Fourier coefficient of SST3 (solid line), the air temperature 
(dashed line), and the meridional heat flux (dashed-dotted line) as a 
function of lag time from model 5 applied to the western Bering Sea 
(I4). 
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Fig. 13. Hindcast skill (%) for different lead times for model 5 
applied to the western Bering Sea (I4). The truncation of the curves 
denotes the significance cutoff. 

are positive, so high SOI in June, say, leads to heavy sea ice in 
the fall/winte•r. 

The other main feature on the upper panel is the large area 
of negative correlation between SOI in the fall and subsequent 
sea ice behavior in the early spring. In this case a high SOI in 
fall will lead to rather light sea ice concentration in the follow- 
ing spring. The size of the correlation (•0.4) suggests predic- 
tive skill of 16%; the models of sections 4 and 5 did not 
possess this level of skill at the implied 4-month lead times. 

Western Bering Sea (14). The time-dependent correlation 
(Figure 14, lower) shows two significant features, features that 
are generally shared by the eastern Bering Sea and Davis 
Strait sectors. The first is a "negatively correlated" structure 
relating fall SOI and subsequent sea ice concentrations (as 
found for the Greenland Sea). The sense of the relation is the 
same' high SOI equals low sea ice. But the predictive lead 
time is now much less, being of order 0-2 months , while the 
skills are higher, ranging to 20%-30%. Apparently the SOU- 
sea ice conditions are more closely and strongly linked in time 
than ice conditions farther removed from the SO region of 
influence. 

Perhaps the most interesting result is seen in the upper left 
and right quadrants of Figure 14 (lower). Relatively large (> 
0.4), negative correlations suggest that winter-spring sea ice 
conditions can be used to predict subsequent SOI variations 
in the spring-summer seasons. Less sea ice would suggest 
future high SOI values. The implied skill level of 10%-25% is 
appreciable. 

6.3. Discussion 

Although the relations shown in Figure 14 are marginal!y 
significant, they seem unlikely to be statistical artifacts, since 

TABLE 5. Hindcast Skill for the Model Hierarchy Applied to the 
Greenland Sea (I1) for 1-Month Lead and 2-Month Lag Times 

Model SH, % SA ' % 

1 (4) (1) 
2 (5) (2) 
3 

4 -- 

5 6 1 

Parentheses indicate models that were only acceptable at the 90% 
level. 
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Fig. 14. Seasonally dependent cross correlation between the Southern Oscillation Index and sea ice extent in the 
Denmark Strait (upper panel) and the western Bering Sea (lower panel). Stipped regions denote negative correlations. 
Values exceeding 0.40 are significant at the 90% level. The time lag (months) is shown on the ordinate. 

the regions of significant cross correlation form a pronounced 
pattern and are not randomly distributed. The explanation of 
this pattern is beyond the scope of this paper. However, 
Walker and Bliss [1932], Berlage [1966], Hotel and Wallace 
[1981], and Wallace and Gutder [1981], among others, have 
shown clear teleconnections between the SOI and the higher- 
latitude circulation features of the northern hemisphere. In a 
sense, then, the results of Figure 14 are not unexpected. How- 
ever, the sharp seasonality of the relations, if real, must be 
explained. 

The suggestion that ice conditions might be used to predict 
SOI seems relatively new. However, before this possibility can 
be seriously considered it will be necessary to develop a physi- 
cal rationale to support what is otherwise an intriguing, but 
purely statistical, relation. 

7. CONCLUSIONS 

The application of an autoregressive model hierarchy to 
Arctic sea ice shows that the cyclostationary model improves 
upon simple persistence in most sectors, especially those sec- 
tors with limited wintertime variability (due to continental 
infringement) and for shorter forecast intervals. The inclusion 
of "neighbor interaction" with adjacent sectors provides little 
increase in true skill, consistent with the findings of Lemke et 
al. [1980]. For Antarctic sea ice the neighbor model generally 
outperforms persistence or the cyclostationary model, except 
for the Weddell and the Ross Sea, where persistence seems to 
be more significant. This result is again in accord with the 
findings of Lemke et al. [1980]. 

The model hierarchy that used external (i.e., nonice) predic- 
tors generally achieved smaller skill than the internal model 
hierarchy. The exceptions to this conclusion occurred in the 
western Bering Sea, where the North Pacific SST provides a 
better prediction than the sea ice itself for 3 months lead. No 
single external predictor could consistently explain most of the 
predictive skill, although air temperature over the predictand 
sea ice sector was the most consistent performer. Heat flux in 
the atmosphere was the second best predictor set on average, 

but the relative roles of the meridional and zonal fluxes were 

not well defined. 

Removal of simple persistence from the Arctic sea ice sector 
data left a residual that generally differed little from "white 
noise." All external models failed to predict the residuals in 
this case. Physically, this suggests that the stochastic dynamic 
model of sea ice proposed by Lemke et al. [1980] is consistent 
with the results of this study. For practical purposes this result 
suggests the simplest ice forecasting scheme (simple persist- 
ence) is relatively good. Improvements can be obtained by 
cyclostationary persistence models in areas of land infringe- 
ment and through the introduction of external predictors (es- 
pecially the SST) in the western Bering Sea. For Antarctic sea 
ice the inclusion of sea ice information in neighboring sectors 
seems to be more important than the introduction of cyclosta- 
tionary terms. 

A brief investigation of the relation between sea ice vari- 
ation and the Southern Oscillation Index gave results that 
suggest strong couplings between the tropics and the Arctic 
region. No explanation for these apparent couplings is offered 
here, but the implied relationship looks secure enough to sug- 
gest future research into the matter. 
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